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ABSTRACT

As an application of the technique employed by the author in a series of

papers [13] - [16], some results are established concerning convergence of the

method of tangent hyperbolas for solving nonlinear equations in Banach spaces

as well as existence and uniqueness of solution. The results are compared

with those obtained by D8ring [4].
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SIGNIFICANCE AND EXPLANATION

Finding sharp error bounds for iterative solutions of nonlinear equations

is one of the important subjects in numerical analysis. This paper gives a

simple technique for finding sharp error bounds for the method of tangent

hyperbolas in a Banach space.
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ON THE METHOD OF TANGENT HYPERBOLAS IN BANACH SPACES

Tetsuro Yamamoto*

I. Introduction

Let X and Y be Banach spaces and F : DC X + Y be twice Frkchet

differentiable in an open convex domain Do C D. Then the method of tangent

hyperbolas for solving the equation

F(x) - 0 (1.1)

is defined as follows:

xn+ 1  Xn - A(xn)'lF(xn) , n > 0 , (1.2)

where x0 c Do and A(x) is defined by

A(x) ,=FI(x) - .- F",xF.,x,-'F~x)t t (1.3)

2

provided that as well as F' exists at each step. This is a

variant of Newton's method and the procedure may also be written as

F'(x n ) + F'(Xn)cn - 0 (1.4a)

xF(xn ) + ,(Xn)dn + 2 Fu(xn)cndn - 0 (1.4b)

xn+ 1 - xn + dn , n > 0 (1.4c)

There is much literature concerning convergence and error estimates for

4 the method. Among others, Mertvecova (91 and Safiev [12] gave convergence
theorems of Newton-Kantorovich type for (1.2), whose proofs are based upon

recurrence relations similar to Kantorovich's one for Newton's method (of.

., [6], (10]). The more detailed and sophisticated discussion was given by

Dring (41, where an abundant list of references can also be found. The other

Department of Mathematics, Faculty of Science, Ehime University, Matsuyama
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convergence proofs which use the majorant principle ((71, [8]) due to

Kantorovich were given by Altman (2], Safiev (11] and Grebenjuk (5].

In this paper, as an application of the technique employed by the author

in a series of papers [13] - [16], we shall establish some results on

convergence of the method of tangent hyperbolas under the weaker assumptions

than theirs. First, in 12, we shall derive several basic results on

convergence and error estimates for the method. Next, in 13, we shall apply

the results to establish a semi-local convergence theorem for the method,

which corresponds to the theorems for Newton's and Newton-like methods

obtained in (141 and [15]. Finally, in 14, our results will be compared with

those obtained by D8ring [4].

2. Preliminaries

According to Safiev [11], [12], but slightly changing his notation, we

assume the following, throughout this paper:

I. The operator F F' (x0 1- exists.

ii. =fir F(x 0) > 0, m - iF F"(x 0 I > 0.

III. EF(F"(x) - F"(y))l < Nix-yl, x, y C Do , N > 0.

IV. The equation

f(t) -- + I1 4t 2 - t + 0 = 0
6 2

has (one negative root and) two positive roots t*, t** such that t* < t*.

Equivalently

M + 4N -(2. + (1)

- 3N(M + + 2N)

where the equality holds if and only if t* = t**. (This follows from

f(t) < 0 with t= 2/(M + /2 + 2N), the positive root of f'(t) - 0.)

Let
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2

and define the scalar sequence {tn} by

to - 0, .~ =  "n a(t,)-If(tn), n > 0 .(2.2)

Then, under an additional assumption t < t, or, equivalently, f(- Z) < 0,
34

Altman [2) proved that the sequence {tn) and {x.1 are well-defined,

converge to t* and a solution x of (1.1) respectively, and

- < t lx - x < t - t n, n > 0 (2.3)In+1 n tn+ 1 nn = n
That is, {tnl is a majorizing sequence for {xn . Grebenjuk (5) also proved

(2.3) by assuming f(2C) < 0. Furthermore, Safiev [11] proved the same result

under the assumption that

h - MC < (2 + Y) -1  
(2.4)

with y _ NM-2, and

f"(t)f'(t)- 2f(t) < a < 2 (2.5)

for t c [O,t*] with a positive constant o. As is easily seen, the

condition (2.4) is stronger than (2.1), and (2.5) follows from (2.1) with

a 1-i., since we can show that f'(t)2 - 2f"(t)f(t) > 0 for 0 < t < t*.

In this section, we improve (2.3) under the assumption (I) - (IV). We

first prepare some elementary lemmas.

Lema 2.1. The sequence {tn }  is well-defined and
0 - to < tl < t2 <ooo+

Proof. It is easy to see that

"'" f(t) 0
f'(t) < a(t) < b - f <

t - t

for 0 < t < t* This implies that, if tn  is defined for some n > 0 and

0 < tn < t , then

f(t )

tn < 'tn+1 t n -

-3-
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(Consider three lines which pass through the point (tn, f(tn)) with the

slopes f'(tn), a(tn) and b. Then the lines intersect with the t-axis at

( n+I' 0), (tn+l, 0) and (t # 0).) Starting with to - 0, we can repeatI the above argument. Q.E.D.

Remark 2.1. By Brown's remark [3], the sequence {tn) is identical to

Newton's sequence applied to the function g(t) - -f(t)/v-f'(t). This gives

us another proof for Lemma 2.1, since we can prove that g(t) < 0, g'(t) > 0

and g"(t) < 0 for 0 < t < t*. Also see Alefeld [1].

Lemma 2.2. The iterates (1-2) are well-defined for every n > 0 and

converge to a solution x of (1.1). More precisely, we have (2.3).

Proof. The same proof as in Altman [2] and Safiev [11] works, since,

under our assumptions (I) - (IV), rn - F'(xn 1  exists for every n > 0 and

we have

ir F(x ) < fN(tn) (2.6)
n - n

IF F'(x 0 )I < -f'(t) , (2.7)

ir F(x )I < f(t) ( (2.8)

Q.E.D.

Lemma 2.3. The following inequalities hold:

IF F"(x + td )I < f"(t + tAt )n n n n

IF F"(x + t(x - x ))I < f"(t + t(t - tn)n n M n n

ir{F"(x + td) - F"(x )}I < f"(t + tat )-f"(t)

and

ir{F*(x + t(x - XP - F"(x ))I < f"(t + t(t - t )1 - f"(t)

where dn - xn+ I - xn, Atn  tn+- tn and 0 < t , 1.

-4-
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Proof. We have

ir F"(x + 4 d )I < ir{F*(xn + td ""I) + ir i'''oi

CN~tl x no"X0 I + (1-t)Ix n- x 0I) + m

<N~t tn~ + (1-t)tn) + M

=f"(t n+ t~t ),etc.

Lewua 2.4. We have

IX* - xn+1 I Ix n1

t -t n+1  t -tn

Proof. Let r~ n F're(xn) 1. Then ye have

x* -nl- - -n + A(xn)1 IF(xn)

= A(xn)lIfF(x*) - Fp(x ) - (x )(x* ftu( )x

+ (F'(x ) A(x ))(x* -x + +-F"(x )(x* x

--A(x -1 )f (1-t)r(F"(x + -~ x ))-F(x ))(x*-x2d
n1 0 0 n nt ft n

+ r{F' (x) ANx + 1F"(x )(x - x )I (x* - xc)

and

F'(xn) -ANx) + -1Fu(x )(x* - x
2 ft n

P "(x )r F(x )+ - F"(xn)(x* - xn2 nn n 2

-F"(x )r{fF(x) + PF(x )(x* - x

)W ~ )rFN itr p + t(x -x M)x -x 2 dt
n ni 0 0 ft n ft

Hence we obtain from Leuma 2.2, (2.6) - (2.8) anid Lemma 2.3

-5-
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Ix -x I < -a(t -N t* t3

1 -f~tnf'tn )  (1-t)f-lt n + tlt* - tnllt* - tn)3dt]-1f"(tn)f'( n1 0 n n3

* 3
Ix -xl• n)
t -t

n

-a(t-lfl t* * 1 (t f I (tnltt t
n n n n 2 " n

+ f~f(t a~ Mt + t )3 Ix -xln1+ I,(n aln) ( n) 1 Ix* (t

- n

0 {t tnt + a(t ( ) t x 3
n n*

t -t
n

t t
nn

Q.E.D.

Lema 2.5. We have

* 3Ix x

t tn+ 1  (t t n > 0 (2.9)

t -t)+<

n

. ~ ~ -An 1  t n > 0 , (2.90)

t* - tn+1I < - n (.0

Proof. The inequality (2.9) is equivalent to

S2 *f(t n)

3 n a(tn)

If * **,

if t t then, considering Taylor's expansion of f(t), f'(t) and

f"(t) about t*, we can easily prove that

2 t t) + f(t)<o , 0< t < t

Therefore, (2.9) holds in this case. If t* < t**, then there exist

constants M and N such that M > M, N > N and the equation f(t)
I - t 3  + 1 t 2 

t + C+ 1 t 2  ; - 0 has positive double roots t int Let (t n

n

-6-



be the sequence obtained by applying the method of tangent hyperbolas to

f(t) - 0 with to = 0. Then, f(t) I f(t) for t >0 and an application of

the maJorant theory (Le-mn 2.2) implies that tn+ - tln 1 t -+ t nand

t -t < Furthermore, we have from Lemma 2.4
n n

t~ ~tn+l t* t n - t n n

t t - t t -
n n

Thi l e tow napsto opoetefloig

t 0-_ t +t

nnd

*n(t) Knt + t+ 6 n = 0

respectively, where IKn -(t tn+i)/(t* - tn) 3  and Sn Ix I+ 1  n XI > 0.

Then we have

a <I* X

n =n n

and

*Ix x 1  < I ~ < n >0

Proof. By Lemmsa 2.4 we have

Ix - x I - < Ix* x I < C Ix x 1x 0
n n= n+ I - n n

which implies V (Ix x 1l) > 0. The function v (t) attains the local

minimum at t F( Ir n (g and, by lemma 2. 5, we have t* - tn< T n

Furthermore,

-7-



Hence the equation 9n(t) - 0 has distinct positive roots T n , n  such

that Tn  < Tn  and we should have Tn(In) < 0, which implies

* * * **

Ix - X I < T < t -t < T < T
n = n n n n

since it is known by Lemma 2.2 that Ix* -xl < t* - tn .  To obtain lower
nn

bounds, we use Gragg-Tapia's technique: The inequalities 6 - Ix - x I <
n n =

** 3*

Ix - x I< K Ix - x 13  mean _ (x - x I) > 0, from which we obtain
'1= n n n

Ix - x I > a , where a denotes the unique positive root of the equation
n n

*n (t) = 0. Finally we have

Ix* -x I < K x x1 3 < T *3 =T - n6nIx n+11 = n n n n n n

Q.E.D.

Corollary 2.1.1. The follwoing error estimates hold:
6n *

0.89 < Ix -x I < 1.5 6 ,n > 0 (211)n n n

and

I x n+1 I < 0.5 6 n " (2.12)

Proof. Let Tn be as defined in the proof of Theorem 2.1. Then 9n(Tn) -

6 I - n < 0 mean Tn > -16n. Hence we have Kn6  < A andn' 3 - nn 2

6)_ (64)3 _ +6 0
2 n 276 2 2 n 2n n

";[T* * * 1-*
so that T < 3 6 and Ix - Xn+Il T 6 < 1 6 Next, let be the

n 2 n -61 n next le

positive root of the equation

Tn(t) Ez 4 2 t 3 + t -6 n 0

"1-n 2762
n

Then we have < a since 4 (t) > (t) for t > 0. The proof isn. nn

completed by verifying 4(0.89 6n) < 0.
%n

.
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3. Main Theorem

a On the basis of the results obtained in the previous section, we can now

prove the following Newton-Kantorovich type theorem:

Theorem 3.1. Tn addition to the assumption (I) - (IV), assume that

S = S( ,.. ._, i x C X Ix-x I < t 1 C D* Then:

Wi The iterates (1.2) are well-defined for every n > 0, lie in S

(interior of F) for n >1 and converge to a solution x* of the equation

(1.1).

(ii) The solution is unique in

5= of r)D (if t* < t**

S(x01t )lD 0  (if t t

(iii) Error estimates

a < Ix -x I <
n =n = n

< + t +1 3

n3 n
N ., (At

n

t5< -t n, n 0
= At n= n

n

and

t n 3
Ix x I< - 6 n >
Ix n = (tn1)3 n-1 ' =

hold, where an and ~Tn are defined in Theorem 2.1.

Proof. (i) was already proved in Lemmas 2.1 and 2.2. To prove (ii), let

xbe a solution in S. Then, replacing x* and t* in the proof of Lemma

2.4 by xand t**, respectively, we have

3 3 3n+1Ix x I Ix - X In\l~ n+ 1 0 3I ,*

t tn+1 I /

*i ' * k. 
. . . . .

o*



(Observe that

ir F"(xn+t(x -x)) < I{F(xn+t(x -X)) - F"(x 0 )}i + i F(x)

< N{t x -x 0 1 + (1-t)lx -x 01 + M

< N{tt + (1-t)t } + M

= n

nn= f"(t n+t(t -tn) etc.)

If t < t*, then p < 1. If t* t*, then p * 1 and t - t+ 1

t - tn+1 + 0 as n + m. Therefore, in any case, we have

** 3 n+1
Ix x I < (t -t 4 1 )P 3 0

as n + m. This implies x - lir x = x
nn+,=

Finally, to prove (iii), we see that

S 3)
(n(6n + (t - n

n

'!< - n+1 (5+ " n+ l 6 n+ 1  3 0
= (t -t ) n n (At)3 n.n n

.4.' Therefore, we obtain

n* *-" 3

T * <6 + (t -t n+l t

n

t -t t tn
< + n+1 6 - n 6 <t -t
- n At n At n= nn n

and

,*-n+1, <n -n. (t*-tn+1)A- EH W.

n

Q.E.D.

-10-



Corollary 3.1.1. The following error estimates holds

I, x I <,+2 1 n n -2 < (3.1)
n

8 2
Ix -x I <1 8n < , n > 0 , (3.2)

n

provided that an > 0.

Remark 3.1. Choose constants N, M and such that N > N, M > M,

I -3 1 -2
and the equation f(t) - Nt + M mt - t + [ - 0 has positive

solutions. Define the sequence {t n as the sequence generated by the method

of tangent hyperbolas applied to the equation f(t) - 0 with t M 0. Then, by

the majorant theory, we have Atn < Atn. Hence, if we replace Atn in (3.1)

and (3.2) by dt_, then sharper error bounds will be obtained.

4. Comparisons

It would be interesting to compare our results with known ones. We first

observe that the conditions (I)- (IV) imply that

ir F"(x)i < ir(F(x) - F"(xo))i + ir F"(xo)I

< Nix - x0I + M (4.1)

< Nr + M

for every x c i(x0 ,r) C Do, where r is a positive constant.

As a modification of Mertvecova [9) and Safiev 112], DMring essentially

proved [4; Satz 2.1] that if S - S(x 0 ,26 0 ) C DO, ir F"(x)i K for every
-' 1 221 -

x c KS0 < and No02 < 21 then {xn }  converges to a solution x and

-11-
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*
Ix -xI < 26

n = n

1N2

20n6n (- N6 + - Kid - c ) (4.2)
< n n-1 6 n-i 2 n-I -2 • >1,

1 -i_

where (0 1 and (rnn  are defined by

Bn.

60=1,0 o  ,Bn=I. ._I •n n Sn 6 nn> 1> .
n-i n nn

Furthermore, if ir F'(xl)11 1, then the solution is unique in S. Under

1our assumptions (1) - (Iv), we can choose X - 2N60 + M (cf. (4.1)). Then, the

condition K60  -
<  is equivalent to 4NS2 + 2M60 S 1, and

o6 6 2 10

f(260 NS +M6 00 (. + . - 1)60 - 6 < 0S02 60

Hence we obtain t < 260 < t It now follows from Theorem 3.1 and Corollary

2.1.1 that the solution is unique in S - S(x0 ,t ) f D0, hence, in

* 3
S S(x26 0 ) and Ix x I < - 6 n Therefore we can replace the factor 23n

in Dring's bound (4.2) by the smaller factor - B .2 n
Dring also proved the following [41 Satz 3.1]: If 1 -- 5

ir F'(x)I < K for every x c F, 310 S I and 3NC 2 < 1, then {x converges

to a solution, which in unique in S and

Ix* - x I < C (4.3)

n n

n-I n-i (4.4)

- < n( 1 N+ 1- K2)6n3_ ,  n > I
-5 'n'6 4n -

(4.5)

where cn = -rnF'(xn) dn xn+1 - Xn' Cn - Ic I and {Bn }  is defined by

o 6n-I n 5n n >
B0" , 0 - O n - ,~_ n " On' n >I

-12-
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Choose X -2 NC + M according to (4.1). Then, the condition 31Z 1 1 is

equivalent to 24W. 2 + ISM~ 15 (the condition 3W. 2 < I is then automatically

satisfied), from which we obtain

(1 8.)3 . 5 1 82 1 3
6 65 24 2 5 35

-- C < 0
150

so that t' < 8 C~ < t * Hence we have from Theorem 3.1 that the solution is

unique in SC S = S(x0 1t n Do. Under his conditions, W~ring obtained

< t - while we have from Corollary 3.1.1

n-n

* provided that 6n #' 0. This, together with his estimates, leads to another

estimate

Ix* - x I < 6 1 1 + i6 n 2 (n > 0) (4.6)

6n~ ~k 1~ t~ 2 1)d-c IM ( 1) (4.7)
A5n 2 t 6 ri- 2 n-I n-i n-i

6 0i nj+1 }(I a +- .1 2)6 3 (ni > 1) (4.8)
=5 n 1 6 4n n- I

where we have used the inequalities

a n 8 - 2 6 0 2n

n n-i1

which can be proved as follows:

-13-
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dn Y-n x. i

=-AMx ) (x ) ( Ft (x ) d Fu (x )d 2 

n n n-i n-i n-i 2 n-i n-i

+ (FI(xi - A(x n-I))d n-+.I FO(x_)d n-1 )

= Ax) vx )(r1 (i-t)r{F-(x + td ) *7(x ))d 2  dt
-An 0 0' n-i n-i n-i n-i

+ -1r F"(x 1 )(rn F(Xni + a )d ~

- -1~ F( x)[(i'it)r{F"(x + td )-F"(x )d2 d
nA~ 0 0' n-i n-i n-i n-I d

+ 1' r "(x )r F"(x )r F(X )d 2_4 n-i n-i n-i n-I n-i n-i

Hence

-a(t n-Ilt{f.( t~) fW(t 1 ))(At 2 dt

1 2 -2 f~ (t 2 1(n-i 2

= -a~t Y (~ - fMt ) f'(t Mt -i M- Mt
nn-i n-I n-I 2 - ni

= -a~t If(t L-J
n n At -

(t t ) 8 n-I2>I

n+I n Atn-I ) 0

6n 2l 62n+I 2
Consequtently, if 2 for j - 0 or , or 2

n-j
then (4.6) - (4.8) imrv 43) -(4.5).

For example, consider the simple example F(x) x x3 -10, X R, x0  2,

which wasn given by W~ring [41. Then, ye have

-14-



1F(x F(x (X - 1 F,(x 0 ) 21
X, lo'l() x + = tl o =i

2

so that 60 4 4

(.2) 3 2.

Therefore, (4.7) and (4.8) are sharper than (4.4) and (4.5) for every n > 1.

Furthermore, according to Remark 3.1, we can improve the bounds (4.6) - (4.8) by

choosing

1 1 8 2 28
C 3 5 1

For such a choice, we have

-15 0 152
t W 195

21

so that we obtain from (4.8)

I~~c 8x 0 "1( B2 1 + K2) (2)12 3-12 6 2 1 8 111 )_ " 7.994 x 10
t1I

while (4.5) gives us

Ix* - I < 9.98 x 1011

(cf. W~ring [4; Table 2]).

-15-
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